Impact of Gas Adsorption Induced Coal Matrix Damage on the Evolution of Coal Permeability
نویسندگان
چکیده
It has been widely reported that coal permeability can change from reduction to enhancement due to gas adsorption even under the constant effective stress condition, which is apparently inconsistent with the classic theoretical solutions. This study addresses this inconsistency through explicit simulations of the dynamic interactions between coal matrix swelling/shrinking induced damage and fracture aperture alteration, and translations of these interactions to permeability evolution under the constant effective stress condition. We develop a coupled coal–gas interaction model that incorporates the material heterogeneity and damage evolution of coal, which allows us to couple the progressive development of damage zone with gas adsorption processes within the coal matrix. For the case of constant effective stress, coal permeability changes from reduction to enhancement while the damage zone within the coal matrix develops from the fracture wall to further inside the matrix. As the peak Langmuir strain is approached, the decrease of permeability halts and permeability increases with pressure. The transition of permeability reduction to permeability enhancement during gas adsorption, which may be closely related to the damage zone development in coal matrix, is controlled by coal heterogeneity, external boundary condition, and adsorption-induced swelling.
منابع مشابه
Impacts of coal shrinkage, permeability and petrography on gas regime in mines Case study: Tahmoor coal mine, NSW, Australia
The volumetric changes in the coal matrix (Coal Shrinkage), permeability under various gas environment conditions as well as perographical properties were studied in the laboratory. The shrinkage and permeability of coal were examined with respect to changing gas type and confining pressures. The shrinkage tests were carried out in high-pressure bombs while the permeability study was conducted ...
متن کاملStudy of Gas Environment Impacts on Volumetric Coal Matrix Changes
The Outburst can be defined as a sudden release of coal and rock accompanied by large quantities of gas into the underground coal mine workings which represents a major hazard in underground coal mines. Gas drainage has been proven to be successful in reducing outburst hazards by decreasing the in-situ gas pressure. One of aspect of gas drainage from coal seams is coal matrix volume changes. Cu...
متن کاملThermodynamical Studies of Irreversible Sorption of CO2 by Wyodak Coal
Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. Adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon diox...
متن کاملResearch on Chaos Characteristic of Crack Evolution in Coal-rock Fracturing
Precisely describing the formation and evolution rules of coal-rock fracturing crack have great value on reservoir fracturing improvement and highly efficient mining of coal bed methane well. In this paper, a non-linear dynamic method is used to study crack damage evolution behavior of coal-rock fracturing. Considering distribution characteristics of natural cracks in coal-rock, and based on da...
متن کاملHow sorption-induced matrix deformation affects gas flow in coal seams: A new FE model
The influence of sorption-induced coal matrix deformation on the evolution of porosity and permeability of fractured coal seams is evaluated, together with its influence on gas recovery rates. The porosity-based model considers factors such as the volume occupied by the free-phase gas, the volume occupied by the adsorbed phase gas, the deformation-induced pore volume change, and the sorptionind...
متن کامل